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Abstract Following the emergence of a novel coronavirus in Wuhan, China instituted shutdown
measures starting in late January and continuing into February 2020 to arrest the spread of disease. This
resulted in a sharp economic contraction unparalleled in recent Chinese history. Satellite retrievals show
that nitrogen dioxide pollution declined by an unprecedented amount (~50% regionally) from its expected
unperturbed value, but regional‐scale column aerosol loadings and cloud microphysical properties
were not detectably affected. The disparate impact is tied to differential economic impacts of the shutdown,
in which transportation, a disproportionate source of nitrogen oxide emissions, underwent drastic declines
(~90% reductions in passenger traffic), whereas industry and power generation, responsible for >90% of
particulate emissions, were relatively less affected (~20% reductions in electricity and thermal power
generation). A combination of anomalously warm and humid meteorological conditions and complex
chemical interactions further decreased nitrogen dioxide concentrations but likely enhanced secondary
aerosol formation.

Plain Language Summary To slow the spread of COVID‐19, China implemented strict policies
limiting travel and public gatherings in February 2020, resulting in a pronounced economic decline.
Satellite measurements show that levels of nitrogen oxides, gases that are a major component of air
pollution, were substantially lower than what we would normally expect for February. Surprisingly,
however, we did not observe any similar changes in airborne particles (another major component of air
pollution) or in the size of cloud droplets (which is partly determined by the abundance of airborne
particles). This is important because airborne particles, in addition to harming human health, affect the
climate by changing how much sunlight is absorbed on Earth versus reflected back into space. The
transportation sector of the economy was hit particularly hard by the coronavirus shutdown, but heavy
industries and power plants were relatively less affected. Transportation is a major source of nitrogen
oxides but not of airborne particles or their chemical precursors, which are mostly emitted by industry
and power plants. The shutdown's much larger effect on transportation than on industry or power plants,
along with changes in weather and chemical interactions, help explain the differences we see in the
different types of air pollution.

1. Introduction
1.1. Emergence of a Novel Coronavirus and the Societal Response to the Resulting
COVID‐19 Pandemic

In late December 2019, cases of a pneumonia of unknown cause were reported in the city of Wuhan. By
January 2020, the pathogen responsible—a novel zoonotic coronavirus—had already spread throughout
China and other nations including Japan, South Korea, and the United States (C. Wang, et al., 2020). To
arrest the spread of COVID‐19 (the disease caused by the novel coronavirus), a series of strict restrictions
on travel and other activities were adapted across China, slowing the spread of the epidemic in China even
as the disease became a global pandemic (Maier & Brockmann, 2020; Tian et al., 2020).

Unsurprisingly, this socioeconomic “shutdown” had a catastrophic effect on the Chinese economy. Figure 1
shows the purchasing managers' index (PMI) for both manufacturing and nonmanufacturing sectors as
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reported by the National Bureau of Statistics of China. The PMI is a survey‐based estimate of economic activ-
ity, with values above 50% corresponding to growth and below to contraction (Harris, 1991). February 2020
stands out sharply, featuring a decline in manufacturing PMI deeper than any point during the aftermath of
the 2008 financial crisis and the only period of contraction in nonmanufacturing PMI since records for that
index began in 2007, followed by a rapid recovery.

1.2. Anthropogenic Drivers of Recent Pollution Changes

Nitrogen oxides (NOx ≡ NO + NO2) are reactive, short‐lived gases that are a major constituent of air
pollution harmful to human health (Atkinson et al., 2018). Due to rapid cycling between NO and
NO2 in the atmosphere, changes in NO2 indicate changes in NOx overall. Tiny particles suspended in
the air (aerosol) are another major component of air pollution. Particulate matter with aerodynamic dia-
meters of 2.5 μm or smaller (PM2.5) is known to have severe health impacts, with some estimates of
global excess mortality due to outdoor PM2.5 approaching 10 million deaths annually (Burnett
et al., 2018).

In addition to their relevance for public health, aerosol particles influence the climate through absorb-
ing and scattering sunlight and by changing the optical properties of other components of the Earth

Figure 1. Economic and environmental indicators from January 2005 to May 2020. (a) China's purchasing managers'
index. Economic growth is indicated by blue shading and contraction by red shading (darker colors signify the
manufacturing and lighter colors the nonmanufacturing sectors). (b) Monthly anomalies of ln(NO2) (red) and aerosol
optical depth (blue) averaged over eastern China and cloud droplet effective radius (green) averaged over the East China
Sea. February 2020 is highlighted in gray shading. (c) Year‐on‐year growth rate of passenger transportation by month.
(d) Combined January–February totals of power generation and some heavy industries.
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system like snow, ice, and clouds. In particular, gaps in our knowledge about the interactions between
clouds and aerosol particles represent the largest source of uncertainty in present‐day anthropogenic
radiative forcing in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment
(Myhre et al., 2013). Aerosol particles can serve as cloud condensation nuclei (CCN) upon which
liquid‐phase cloud droplets may form. Increasing CCN increases the number of cloud droplets and
(for the same amount of liquid water) decreases their size, increasing cloud reflectivity
(Twomey, 1977). Macrophysical cloud adjustments to these microphysical changes can either enhance
or offset this “Twomey effect” (Ackerman et al., 2004; Albrecht, 1989). Aerosol also influences
mixed‐phase and ice cloud properties, although the climatic effects of these changes are even less cer-
tain (Storelvmo, 2017).

Determining whether observed cloud changes are attributable to aerosol or meteorological factors is a major
challenge (Gryspeerdt et al., 2016; Stevens & Feingold, 2009). To better constrain causality, there has been a
growing literature on “natural experiments” like volcanic eruptions and inadvertent anthropogenic modifi-
cations like ship tracks (Malavelle et al., 2017; Toll et al., 2019). A clear signal in aerosol and cloud properties
due to the February 2020 shutdownwould be of great interest to those working to constrain themagnitude of
aerosol‐cloud interactions.

Both long‐term changes in air pollution and aerosol‐cloud interactions over China and short‐term
changes attributable to individual events have been analyzed extensively. Increasing aerosol and cloud
droplet number concentrations were associated with China's rapid economic growth between the 1980s
and the 2000s (Bennartz et al., 2011). Over the past decade, however, sulfate aerosol and cloud droplet
number concentrations have declined (McCoy et al., 2018). Recent declines in pollutants like PM2.5 and
NO2 have been driven by increasingly stringent environmental policies (Jin et al., 2016) including goals
set by the eleventh (2006–2010) and twelfth (2011–2015) Five‐Year Plans (de Foy et al., 2016; Liu et al., 2016;
van der A et al., 2017), the 2013 Air Pollution Prevention and Control Action Plan (A. Ding et al., 2019; Silver
et al., 2018; Zhai et al., 2019; Zhang et al., 2019; B. Zheng et al., 2018; Y. Zheng et al., 2017), and the 2018
Three‐Year Action Plan for Winning the Blue Sky Defense Battle. Ephemeral pollution decreases have also
been associated with high‐profile events like the 2008 Olympics and Paralympics in Beijing (Cermak &
Knutti, 2009; Witte et al., 2009), the 2010 World Expo in Shanghai (Hao et al., 2011), and the 2014 Youth
Olympic Games in Nanjing (J. Ding et al., 2015).

Research has already begun on the environmental consequences of COVID‐19. Carbon dioxide emis-
sions have significantly declined due to shutdown measures worldwide (Le Quéré et al., 2020). Strong
declines in NO2 have been observed in Europe, China, South Korea, and the United States (Bauwens
et al., 2020; Liu et al., 2020); however, emissions reductions related to the early Chinese shutdown were
insufficient to avoid bad haze episodes in several cities (Chang et al., 2020; X. Huang et al., 2020; Le
et al., 2020; P. Wang et al., 2020) and benefits from decreasing NOx and PM2.5 may be offset by related
increases in ozone (X. Huang, Ding, Gao, et al., 2020; Shi & Brasseur, 2020). We add to this work by
examining regional‐scale NOx changes alongside possible aerosol and cloud changes in the context of
the 2005–2020 satellite record and by drawing upon meteorological, economic, and emissions data to
help explain the differences we observe between pollutants during China's February 2020 shutdown.

2. Data

We analyze monthly mean pollution and cloud properties from January 2005 to May 2020 using National
Aeronautics and Space Administration's (NASA's) “A‐train” satellite constellation (local overpass times
~13:30). NO2 and SO2 data are from the Ozone Monitoring Instrument (OMI) on Aura (Levelt et al., 2018;
Schoeberl et al., 2006) and aerosol optical depth (AOD), liquid‐phase cloud droplet effective radius (re),
single‐scatter albedo (ω0), and Ångström exponent (α) data are from the Moderate Resolution Imaging
Spectroradiometer (MODIS) on Aqua (Parkinson, 2003). For OMI, we compute monthly averages using
NASA's standard daily 0.25° by 0.25° gridded products for NO2 tropospheric column retrievals screened
for cloud fractions below 30% (Krotkov et al., 2017, 2019) and planetary boundary layer (PBL) SO2

(Krotkov et al., 2015). For MODIS, we use standard monthly 1.0° by 1.0° gridded Collection 6.1 products
for AOD at 550 nm, liquid re retrieved using the near‐infrared 2.1 μm channel and a visible channel
(Hubanks et al., 2019; Platnick et al., 2017), and ω0 at 470 nm and α from the Deep Blue algorithm
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(Hsu et al., 2013; Sayer et al., 2019). More information about the satellite retrievals are provided in the
supporting information.

Two‐meter air temperature and specific humidity and 10‐m winds are from the Modern‐Era Retrospective
analysis for Research and Applications, Version 2 (MERRA‐2) product (Gelaro et al., 2017) and are bilinearly
interpolated to OMI/MODIS grids as needed.

Monthly economic statistics are compiled from the National Bureau of Statistics of China (NBSC). Emissions
of NOx, PM2.5, and SO2 in 2015 broken down by economic sector (IPCC, 2006) are provided by the Emissions
Database for Global Atmospheric Research (EDGAR), version 5.0 (Crippa et al., 2018, 2020).

3. Pollution Changes During the February 2020 Shutdown
3.1. Regression Model

Monthly anomalies of ln(NO2), AOD, and re are shown in Figure 1b. We average the ln(NO2) and AOD
values over a region (20–42°N, 108–125°E) encompassing the eastern provinces of the People's Republic of
China, Hong Kong, and Taiwan. We average re over a region (23–35°N, 122–130°E) in the East China Sea
in which previous studies have examined aerosol‐related cloud microphysical trends (Bennartz et al., 2011;
McCoy et al., 2018). Perhaps surprisingly, no clear perturbation can be seen in the cloud or aerosol fields in
February 2020, and it is not clear that the apparent decline in ln(NO2) is statistically distinguishable from
other variations not associated with such an abrupt socioeconomic upheaval. Simply comparing observed
pollution levels in 2020 to values from previous years or a long‐term average can be misleading due to sea-
sonal cycles and trends in emissions and/or concentrations. For example, one may expect February 2020 pol-
lution levels to have been below the 2015–2019 mean even without any coronavirus‐related disturbance due
to policy‐related trends.

To address these issues, we employ an ordinary least squares linear regression model (Pedregosa et al., 2011)
to better estimate what monthly mean air pollution and cloud properties should have been in the absence of
coronavirus‐related perturbations:

Y t;ϕ; λð Þ ¼ c0 ϕ; λð Þ þ cpre ϕ; λð ÞPpre tð Þ þ cpost ϕ; λð ÞPpost tð Þ þ cCNY ϕ; λð ÞHCNY tð Þ

þ ccos ϕ; λð ÞScos tð Þ þ csin ϕ; λð ÞSsin tð Þ;

(1)

where Y is the geophysical variable of interest—ln(NO2), AOD, or re—as a function of time (t, in months
since January 2005) estimated independently at each grid box of latitude ϕ and longitude λ and the regres-
sors P, H, and S are defined as follows. Each constant c and the intercept c0 are calculated independently
at each grid box. We use the natural logarithm of NO2 rather than its absolute value for the regression
because NO2 is distributed log‐normally in space (de Foy et al., 2016) and later analyses involve taking
spatial averages. The model is fit based on data from January 2005 to December 2019 and is used to predict
the expected values for January–May 2020.

We define the regressors Ppre and Ppost as the trend in terms of months preceding or following January
2013, respectively. January 2013 was chosen as the policy “turning point” due to the severe haze events
that occurred early that year (R. Huang et al., 2014; G. Zheng et al., 2015) that contributed to the crea-
tion of the ambitious Air Pollution Prevention and Control Action Plan in September 2013 (Jin
et al., 2016).

Next, the regressor HCNY refers to whether the Chinese New Year holiday and related festivities (Jiang
et al., 2015; Tan et al., 2009) occurred during time t. When Chinese Lunar New Year begins in February,
HCNY is assigned a value of 1. When the holiday begins in late January with festivities lasting into early
February,HCNY is assigned a value based on the fraction of the 10 days following the Lunar New Year occur-
ring in each month. HCNY is set to zero all other times.

Finally, the regressors Scos and Ssin refer to idealized seasonal cycles, represented as two annual Fourier
modes:
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Scos tð Þ ¼ cos 2π
m tð Þ − 1

12

� �
; (2)

Ssin tð Þ ¼ sin 2π
m tð Þ − 1

12

� �
; (3)

where m refers to the calendar month (January ¼ 1) at time t.

Supporting information Figure S1 shows the value of each regressor as a function of time; Figure S2 shows
maps of the coefficient of determination (R2), root‐mean‐square (RMS) error (εRMS), and number of samples
used to fit the regression (N); and Figures S3–S5 show maps of the intercept and regression coefficients for
ln(NO2), AOD, and re, respectively.

3.2. Results

Maps of the observed (retrieved) and expected (regression) values of NO2, AOD, and re for February 2020,
along with the difference between the observed and expected values, are shown in Figure 2. (NO2 values
are converted into their absolute values for the sake of presentation.) There is a readily apparent decline
in NO2, in some places rivaling the magnitude of the total tropospheric column, consistent with the results
of Bauwens et al. (2020). However, there are no consistent differences in either the aerosol loading or cloud
microphysics on a regional scale. Furthermore, regions with the largest discrepancies in the cloud fields tend
to be those with the lowest explained variance (Figure S2). The lack of a regional AOD decline is in apparent
conflict with some previous results (X. Huang, Ding, Gao, et al., 2020; Le et al., 2020; Shi & Brasseur, 2020),
although it should be noted that the quantities of interest (regional‐scale column aerosol loading versus sur-
face PM2.5 at specific stations) are different. There does appear to be an increase in AOD surrounding
Beijing, which is consistent with some previous results (X. Huang, Ding, Gao, et al., 2020; Le et al., 2020).
The only area with what appears to be a coherent decline in AOD occurs around Shanghai, although even

Figure 2. Change in pollution over China for February 2020. (left column) Observed values, (middle column) estimated values, and (right column) their
difference are shown for (top row) NO2, (middle row) AOD, and (bottom row) re. Shading is such that lighter (left and middle columns) and greener
(right column) colors align with what would be expected for less pollution. Areas without valid data are shaded in gray. Gray stippling indicates absolute
differences below 2εRMS. Black boxes in the right column indicate areas used for the regional averages.
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that city experienced relatively high levels of surface PM2.5 in two events earlier in the month (Chang
et al., 2020).

To look at the differences between the observed and estimated values in greater historical perspective, we
average the observed and estimated ln(NO2), AOD, and re values over the same regions used in Figure 1b.
Results are displayed in Figure 3, with the root‐mean‐square (RMS) error in this case calculated using the
differences between the spatially averaged observed and expected values from January 2005 to December
2019. Like the PMI indices, ln(NO2) shows a pronounced and unprecedented decline in February 2020 fol-
lowed by a rapid recovery. In contrast, AOD and re values during 2020 are not perceptibly distinct from the
2005–2019 record.

Sulfate aerosols, which can form via the oxidation of SO2 in the atmosphere, are a major source of cloud con-
densation nuclei. PBL SO2 as retrieved by OMI is noisier than the tropospheric column NO2 retrievals and
can be affected by factors like elevated volcanic plumes, although previous analyses have successfully ana-
lyzed regional‐scale trends to gain insight into long‐term pollution changes (Krotkov et al., 2016; McCoy
et al., 2018). Figure S6 shows PBL SO2 averaged over eastern Asia excluding major Northern Hemisphere
volcanic eruptions. SO2 levels in February 2020 are in line with the decreasing trend since 2013 and are
slightly above the previous year's values, consistent with the minimal change in cloud and aerosol
properties.

3.3. Detectability

The differences between our model's expectations and the observations can be due to emissions changes not
captured in our broad policy‐related trend terms or other factors such as meteorological variability. Thus, for
a given emissions reduction, we may not be able to reliably detect that reduction given other fluctuations.

We estimate the probability of detection, defined as the probability that we would observe a regionally aver-
aged change exceeding a given threshold, as follows. For emissions reductions up to 90%, we adjust the
expected value by a proportional amount for NO2 and AOD and then generate a spread using a normal dis-
tribution fit with the adjusted expectation and RMS error (Figures 3b, 3d, and 3f). The fraction laying below
the threshold is the probability of detection. This method assumes that concentrations/optical properties
decline proportionally to emissions, which neglects the idea that not all emissions are anthropogenic; that
there may be complex interactions between emissions and concentrations; and that optical properties may
not vary linearly with aerosol concentration (especially if the mix of sources changes) but should still provide
useful results assuming that natural emissions are small compared to the anthropogenic emissions and if
interpreted cautiously. A similar method is employed for re, taking into account the more indirect relation-
ship between aerosol and cloud properties by estimating the increase in droplet size for a given reduction in
aerosol number (Na) as

δln reð Þ ≈ δln Nað Þ δln Ndð Þ
δln Nað Þ

� �
δln reð Þ
δln Ndð Þ

� �
≈ −β

δln Nað Þ
3

; (4)

where Nd is the cloud droplet number concentration, β is the log‐log sensitivity of Nd to aerosol changes,
and the factor of −1/3 relating re and Nd changes assumes liquid water path changes are negligible.
Because the β parameter is highly uncertain, we bound plausible re responses by making separate esti-
mates for low and high sensitivities of 0.3 and 0.8, respectively (Bellouin et al., 2020).

Figure S7 shows the probability of detection for ln(NO2), AOD, and both bounded estimates for re for detec-
tion thresholds of decreases (NO2 and AOD) or increases (re) of one, two, and three RMS errors of the (unad-
justed) expected value for February 2020. If emissions were reduced by greater than 80%, there is a very large
probability that we would have detected changes in all three variables at the strictest (3εRMS) threshold
(unless the clouds have very low susceptibility to aerosol), whereas if emissions were reduced by 20% or less,
we would be unlikely to detect changes in any of the variables at the strictest threshold and only have even
odds of detecting aerosol or cloud changes at the most lenient threshold (1εRMS). For a 50% emissions reduc-
tion, we would be very likely to detect a NO2 change at any threshold, whereas detection of changes in AOD
or re (assuming higher sensitivity) would only be very likely at the 1–2εRMS thresholds and have even odds at
the 3εRMS level. Given that the AOD and re perturbations we estimated are both within 1εRMS of their
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Figure 3. Time series of observed (Obs) and expected (Exp) values and their differences for (a, b) ln(NO2), (c, d) AOD,
and (e, f) re, as averaged over the boxes in Figure 2. Manufacturing PMI is shown for reference.
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expected values, this analysis suggests that aerosol reductions during the February 2020 lockdown period
were unlikely to have exceeded ~20%.

4. Factors Influencing Pollution Changes During the February 2020 Shutdown
4.1. Meteorology

Meteorology is an important driver of changes in pollution concentrations (de Foy et al., 2016; P. Wang et al.,
2020; Zhai et al., 2019; Zhang et al., 2019). To assess the effects of meteorology on our results, we create a
second linear regression model as follows:

Ymet t;ϕ; λð Þ ¼ c0 ϕ; λð Þ þ cpre ϕ; λð ÞPpre tð Þ þ cpost ϕ; λð ÞPpost tð Þ þ cCNY ϕ; λð ÞHCNY tð Þ þ cT ϕ; λð ÞT2M t;ϕ; λð Þ

þ cqv ϕ; λð ÞQ2M t;ϕ; λð Þ þ cu ϕ; λð ÞU10M t;ϕ; λð Þ þ cv ϕ; λð ÞV10M t;ϕ; λð Þ;

(5)

where Ymet is the geophysical variable of interest, the terms relating to policy‐driven trends and holiday
effects are the same as for the model in Equation 1, and the idealized seasonal cycle has been replaced
by the meteorological terms T2M for 2‐m air temperature, Q2M for 2‐m specific humidity, and U10M and
V10M for 10‐m zonal and meridional winds, respectively. All meteorological variables are standardized
by subtracting the 2005–2019 mean from each monthly value and dividing by the 2005–2019 standard
deviation. Figure S8 shows maps of regression diagnostics (R2, εRMS, and N), and Figures S9–S11 show
maps of the intercept and regression coefficients for ln(NO2), AOD, and re, respectively.

Figure S12 shows time series of the regionally averaged results, which are overall similar to those in Figure 3.

The differences between the model described by Equation 1 and the observations can be interpreted as being
due to a combination of meteorology and emissions (including emissions‐concentrations‐chemistry interac-
tions), whereas the difference between the model described by Equation 5 and the observations can be inter-
preted as being due to emissions alone. (Of course, there also may be other factors that have not been
accounted for or meteorological effects not captured by the linear model.) The effect of meteorology can
be estimated in two ways: as the difference between the expectations between the two models or as the dif-
ference between the model described by Equation 5 and the same model with the meteorological factors set
to their mean values for a givenmonth. Similarly, the (linear) contribution of individual meteorological vari-
ables can be estimated as the difference between the model described by Equation 5 and that model with the
meteorological variable of interest set to its monthly mean value.

Figure S13 shows the decomposition of emission and meteorology effects using this framework for February
2020. Meteorology alone would have led to a ~10% decrease in NO2, driven mostly by temperature, followed
by humidity. The emissions effect alone would have led to a ~50% decrease. In contrast, meteorology is esti-
mated to have increased AOD by ~5%. Meteorological anomalies during February 2020 are shown in
Figure S14. Conditions were warmer and wetter than average, corresponding with increased chemical sinks
of NO2 but more potential for secondary production of aerosol (Le et al., 2020).

4.2. Emissions

Another explanation for the different NOx and aerosol responses is that economic sectors that disproportio-
nately emit one or the other pollutant may have been impacted differently by the shutdown. Figures 1c and
1d show changes in passenger transportation, energy generation, and iron and steel production from 2005 to
2020. Figure S15 includes a variety of other economic subsectors tracked by the National Bureau of Statistics
of China. Passenger transportation, in particular, was devastated by the shutdown. In contrast, total
January–February power generation was down ~10% (similar to 2008–2009), implying a decrease of ~20%
in February alone. Heavy industries like steel production (slightly up) were comparatively unaffected, with
the remainder of the economy somewhere in between.

Different reporting metrics were chosen based on data quality and availability. For a more directly compar-
able (but temporally limited) perspective, Figure S16 shows the change in January–March production
between 2020 and 2019 for each subsector.

Anthropogenic emissions of NOx (ENOx ), PM2.5 (EPM2:5 ), and SO2 (ESO2 ) for the year 2015 from EDGAR are
combined to create aggregate “transportation” and “industry and power” sectors, with the remainder

10.1029/2020GL088913Geophysical Research Letters

DIAMOND AND WOOD 8 of 12



lumped into an “other” category primarily consisting of agriculture and waste management. (See supporting
information Tables S1–S3 for the specific breakdown of the transportation, industry and power, and “other”
sectors, respectively, by IPCC 2006, code.) Figure S17 showsmaps of the contributions of the three pollutants
by economic sector. Transportation is amajor source of NOx pollution, comparable to the industry and power
sectors, whereas the industry and power sectors dominate emissions of primary PM2.5 and SO2 (a major
aerosol precursor). Supporting information Tables S1–S3 provide sums of annual emissions in 2015 over
eastern China for each sector grouping. The transportation sector accounts for 26.2% of all NOx emissions
but only 4.7% of PM2.5 and 3.6% of SO2 emissions (Table S1), while the industry and power sectors account
for 72.3% of NOx, 92.8% of PM2.5, and 95.1% of SO2 emissions (Table S2). Given that decreases in NOx,
PM2.5, and SO2 since 2015 have been driven primarily by regulations targeting the industrial sector (Zhang
et al., 2019), it is likely that the transportation sector comprised a greater share of total NOx emissions in
2020 than in 2015.

The ~50% decline in NO2 due to emissions can be mostly explained by a dramatic fall in transportation emis-
sions paired with a 10–20% reduction in energy and industrial sources. A ~20% decline in aerosol emissions
would likely go undetected by our method (Figure S7). At the same time, this analysis suggests that the esti-
mated ~40% decline in coal burning during the Chinese lockdown period from Le Quéré et al. (2020) is
unrealistically high, both because electrical and thermal power declined by only ~20% at peak and because
a ~40% decline in aerosol emissions should have been detectable, at least at the less stringent thresholds. The
Chinese coal data in that study come from a private industry analysis of several power plants, which may not
have been representative of the national response. However, given that reductions in ground transportation
dominate their analysis as well, even halving the industrial change estimates would not substantially change
their results (e.g., the peak global decline on 7 April 2020 would fall ~10%, from ~17 to ~15 MtCO2/day).

One caveat about our aerosol estimates is that we assume that the significant aerosol reductions between
2013 and 2017 continued during 2018–2020. If we instead were to freeze Ppost at its 2017 value (assume no
further progress), the observed AOD would have been 10–20% below its expected value. Our analysis is con-
sistent with no aerosol change, a moderate decrease, or, as discussed below, a moderate decrease in emis-
sions compensated by increased secondary production.

4.3. Chemistry

As a further complication, meteorological anomalies, emissions changes, and their interactions influenced
atmospheric chemistry and therefore pollution concentrations in February 2020.

During the winter, the atmospheric lifetime of NOx (~1 day) over eastern China decreases with decreasing
emissions as higher ozone concentrations allow for more loss via reaction with hydrogen oxide radicals
(HOx) during the day and via hydrolysis of N2O5 (an important NOx reservoir) within aerosols at night
(Shah et al., 2020). We may therefore expect decreases in NO2 concentrations to exceed reductions in NOx

emissions.

PM2.5 concentrations may either increase or decrease as a response to a NOx decline depending on its mag-
nitude and background concentrations (Zhao et al., 2017). The increase in O3 as NOx emissions fall (Shi &
Brasseur, 2020) increases HOx concentrations and thus the atmospheric oxidizing capacity, which could
further reduce NO2 but facilitate secondary aerosol formation (X. Huang, Ding, Gao, et al., 2020). This in
combination with the relatively warm and wet February 2020 meteorological conditions offers a compelling
explanation for the apparent increase in aerosol surrounding Beijing (X. Huang, Ding, Gao, et al., 2020; Le
et al., 2020; P. Wang et al., 2020), although the effect appears to be weaker in other regions, perhaps due to
differences in background conditions. However, regional aerosol changes are not necessarily independent as
transport and aerosol‐boundary layer interactions can lead to a complex interplay in pollution levels
between regions (Chang et al., 2020; X. Huang et al., 2020).

To assess potential changes in aerosol composition and size distribution, we analyze ω0 and α using the
model described by Equation 1. Figure S18 shows time series of observed and expected values, and
Figure S19 shows maps of the February 2020 anomalies. Since 2013 there has been a trend toward higher
ω0 (less absorption) and lower α (coarser size distribution), which is reversed during February 2020 (more
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absorbing and finer aerosol). The anomalies in February 2020 are similar to those in December 2019, how-
ever, so it is not clear that these anomalies can be attributed to shutdown effects.

5. Conclusions

Despite unprecedented declines in economic activity and NOx emissions during the February 2020 corona-
virus shutdown in China, we find no detectable perturbation in aerosol and related cloud properties. The
severe curtailment of passenger transportation (a disproportionate NOx source) but comparatively muted
changes in power generation and heavy industry (disproportionate PM2.5 and SO2 sources), along with
meteorology and complex chemical interactions, help explain this discrepancy.

Further study of the environmental consequences of COVID‐19 is warranted, not least because potential
links between long‐term and short‐term air quality and vulnerability to the disease remain unresolved
(Contini & Costabile, 2020). There is some evidence that short‐term exposure to air pollution increased
the case fatality rate of the 2002–2003 Severe acute respiratory syndrome outbreak in several Chinese
cities (Cui et al., 2003), which raises the possibility of feedbacks between containment measures that
reduce pollution and population‐level resilience. Additionally, dramatically reduced transportation sector
emissions without similar changes in other sectors could represent a plausible future emissions mix if
widespread electrification of transportation is adopted but other sectors do not adopt similar pollution
mitigation measures.

Data Availability Statement

OMI/Aura and MODIS/Aqua Level 3 gridded data and MERRA‐2 meteorological reanalysis data are pub-
licly available from NASA's Goddard Earth Sciences Data and Information Services Center (https://disc.
gsfc.nasa.gov/). Various economic statistics from the People's Republic of China are publicly available from
the National Bureau of Statistics of China (http://www.stats.gov.cn/english/). EDGAR's annual
sector‐specific grid maps are publicly available from the European Commission's Joint Research Center
(https://edgar.jrc.ec.europa.eu/overview.php?v¼50_AP; https://data.europa.eu/doi/10.2904/JRC_DATA
SET_EDGAR).
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